Normal view MARC view ISBD view

Development Of Novel Mtdna Metabarcodes For The Species Differentiation Of Class Aves

By: Syeda Rida Mehak Sherazi (2010-VA-477) | Dr. Muhammad Imran.
Contributor(s): Dr. M. Yasir Zahoor | Mr. Shahid Abbas.
Material type: materialTypeLabelBookPublisher: 2016Description: 87p.Subject(s): Molecular Biology and BiotechnologyDDC classification: 2617-T Dissertation note: The Folmer COI mtDNA universal primers that are considered standard for DNA barcoding of life contain so many mismatches against the target sequences of vertebrate origin that they often end in failure to amplify many of vertebrate DNA extractions. This discrepancy favors for the selection and designing of new metabarcode primers that can be used to identify all individuals of vertebrates or at least all individuals represented in a class of Vertebrata such as Class Aves. The current study embarks on such an endeavor. In this study development of new mtDNA metabarcode (16SrRNA) that can be used as universal primers to amplify almost all species of Class Aves for different forensic and molecular biodiversity analyses. Blood/feather/tissue samples were collected from Class Aves (one specimen from every order reported to be present in Pakistan). DNA was extracted from the collected specimens through standard organic method, qualified and quantified and then PCR-amplified using novel universal primers selected from aligned mtDNA sequences originating from all Aves mitochondrial DNA genomes submitted to different online sequence databases such as NCBI nucleotide database. The sensitivity of PCR also be assessed using a range of DNA concentrations. The amplified products were sequenced on ABI Genetic Analyzer following Sanger’s dideoxy method of sequencing. The correctness of obtained mtDNA sequences were examined visually in Chromas Lite 2.1 software and then alignment of these sequences were performed against highly similar DNA sequences in NCBI nucleotide databases using BLAST in order to identify origin of unknown mtDNA sequences. With the help of sequencing and phylogenetic studies specificity of the universal primer set confirmed and presented as a novel metabarcode (16SrRNA) for species level identification of large number of Avian species In summary, we present universal method for species classification of Aves using a targeted parallel sequencing approach. Both sequencing and phylogenetic studies experiments confirm Summary 82 specificity of universal primer set. Although promising results were obtained with current settings, rapid improvement of bench top instruments will further develop method with less hands-on, fewer sequencing errors and lower detection limit. So, in future, this barcode can be used for species identification in various fields of study such as meat adulteration, illegal trade, food mislabeling and molecular estimation of biodiversity.
Tags from this library: No tags from this library for this title. Add tag(s)
Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Collection Call number Status Date due Barcode Item holds
Thesis Thesis UVAS Library
Thesis Section
Veterinary Science 2617-T (Browse shelf) Available 2617-T
Total holds: 0

The Folmer COI mtDNA universal primers that are considered standard for DNA barcoding of life contain so many mismatches against the target sequences of vertebrate origin that they often end in failure to amplify many of vertebrate DNA extractions. This discrepancy favors for the selection and designing of new metabarcode primers that can be used to identify all individuals of vertebrates or at least all individuals represented in a class of Vertebrata such as Class Aves. The current study embarks on such an endeavor. In this study development of new mtDNA metabarcode (16SrRNA) that can be used as universal primers to amplify almost all species of Class Aves for different forensic and molecular biodiversity analyses.
Blood/feather/tissue samples were collected from Class Aves (one specimen from every order reported to be present in Pakistan). DNA was extracted from the collected specimens through standard organic method, qualified and quantified and then PCR-amplified using novel universal primers selected from aligned mtDNA sequences originating from all Aves mitochondrial DNA genomes submitted to different online sequence databases such as NCBI nucleotide database. The sensitivity of PCR also be assessed using a range of DNA concentrations. The amplified products were sequenced on ABI Genetic Analyzer following Sanger’s dideoxy method of sequencing. The correctness of obtained mtDNA sequences were examined visually in Chromas Lite 2.1 software and then alignment of these sequences were performed against highly similar DNA sequences in NCBI nucleotide databases using BLAST in order to identify origin of unknown mtDNA sequences. With the help of sequencing and phylogenetic studies specificity of the universal primer set confirmed and presented as a novel metabarcode (16SrRNA) for species level identification of large number of Avian species
In summary, we present universal method for species classification of Aves using a targeted parallel sequencing approach. Both sequencing and phylogenetic studies experiments confirm
Summary
82
specificity of universal primer set. Although promising results were obtained with current settings, rapid improvement of bench top instruments will further develop method with less hands-on, fewer sequencing errors and lower detection limit. So, in future, this barcode can be used for species identification in various fields of study such as meat adulteration, illegal trade, food mislabeling and molecular estimation of biodiversity.

There are no comments for this item.

Log in to your account to post a comment.


Implemented and Maintained by UVAS Library.
For any Suggestions/Query Contact to library or Email:rehana.kousar@uvas.edu.pk Phone:+91 99239068
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.